Molecular dynamics study on the mechanical properties of nanocrystalline Ni-W alloys with bimodal structure

Author:

Li Guo,Wang Ruipeng,Cai Qixing,Zhang FengORCID,Zhu Dasheng,Li Fengtian

Abstract

Abstract In order to study the effects of coarse grain size and Ni content on the mechanical properties, the molecular dynamics (MD) simulation of nanocrystalline (NC) Ni-W alloys with bimodal structure is carried out. The bimodal NC Ni-W alloys samples are established by embedding coarse grain into the fine grain matrix. The solute Ni atoms in the alloys are segregated in the grain boundary affected zone (GBAZ) through severe plastic deformation (SPD). The uniaxial tensile simulation of the samples shows that the coarse grain size and Ni content have obvious effects on the mechanical properties of bimodal NC Ni-W alloys. The dislocation activities and deformation mechanism of the NC Ni-W alloys are discussed in detail by observing the atomic configurations and strain evolutions diagrams obtained by MD simulation. At the same time, the phenomenon of Hall-Petch relationship and inverse Hall-Petch relationship is also observed in the research process.

Funder

Natural Science Foundation of Jiangsu Province

Scientific research fund project of Nanjing Institute of Technology

National Natural Science Foundation of China

Scientific Research Fund for High-level Talents in Nanjing Institute of Technology

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3