Effects of viscoelastic bonding layer on performance of piezoelectric actuator attached to elastic structure

Author:

Ali Ibrahim AORCID,Alazwari Mashhour A,Eltaher Mohamed A,Abdelrahman Alaa A

Abstract

Abstract In the context of the finite elements analysis, the mechanical performance of viscoelastically bonded smart structures is investigated and analyzed. Three different models are considered and compared. In the 1st model, the actuator is glued to the host structure. On the other hand, in the two other models the actuator is glued to the bonding layer which is glued to the host structures. To explore the effect of the bonding layer characteristics on the mechanical behavior of the host structure, both elastic and viscoelastic layers are considered. The Prony’s series are utilized to simulate the viscoelastic constitutive response. The mathematical formulation of the coupled problem is presented and the dynamic finite elements equations of motion of the coupled electromechanical systems are introduced. The proposed methodology is verified by comparing the obtained results with the available results in the literature and good consentience is observed. Both static and dynamic vibration behaviors are studied incorporating the interfacial shear stresses between the bonding layer and the host structure as well as the displacements as a comparison criterion to determine the performance controlling function of the host structure. Parametric study of piezoelectric properties showed that permittivity is required in solving such systems but does not affect the performance. On the other hand, the piezoelectric characteristics have significant effects on the mechanical performance of smart structures and can be used in the optimum selection of combination just like mechanical properties and geometry. Additionally, the obtained results show that the model with viscoelastic bonding layer has an overall static performance nearly half of elastic bonding layer model while it has a slight effect on the dynamic behavior compared with the corresponding elastic bonding layer. The proposed methodology with the obtained results is supportive in the applications of structure health monitoring and dynamics of smart structural systems. The proposed procedure could be extended in a future work to include the coupled electromagnetic effects on the dynamic behavior of smart structures in hygrothermal environment.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3