Abstract
Abstract
The oxidation behavior of 316L stainless steel exposed at 400, 600 and 800 °C air for 100, 500 and 1000 h was investigated using different characterization techniques. Weight gain obeys a parabolic law, but the degree of deviation of n index is increasingly larger with the increase of temperature. A double oxide film, including Cr2O3 and Fe2O3 oxide particles in outer and FeCr2O4 oxides in inner, is observed at 400 °C. As regards to samples at 600 °C, a critical exposure period around 100 h exists in the oxidation process, at which a compact oxide film decorated with oxide particles transforms to a loose oxide layer with a pore-structure. In addition, an oxide film containing Fe-rich outer oxide layer and Cr-rich inner oxide layer is observed at 600 °C for 500 and 1000 h. Spallation of oxide scale is observed for all samples at 800 °C regardless of exposure periods, resulting in different oxidation morphologies, and the degree of spallation behavior is getting worse. A double oxide film with the same chemical composition as 600 °C is observed, and the thickness increases over exposure periods.
Funder
National Natural Science Foundation of China
National Natural Science Foundation of Jiangxi, China
Foundation of Jiangxi Educational Committee
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献