Wear behaviour of aluminium alloy 5083/SiC/fly ash inoculants based functional composites – optimization studies

Author:

Santhosh N,Praveena B A,Chandrashekar AORCID,Mohanavel VORCID,Raghavendra S,Basheer Dadapeer

Abstract

Abstract The wear characteristics of Aluminium AA 5083/SiC/Fly Ash functional composites under different load conditions are an important aspect to assess the inoculation of Fly Ash for enhancing the functionality of the aluminium composites with respect to its tribological behaviour and its influence on wear properties. The present work is majorly aimed at the development of AA 5083/SiC functional composites inoculated with Fly Ash using stir casting method for different blends of the reinforcements (2.5, 5 & 7.5 wt%). The novelty of this research is majorly attributed to the incorporation of functional inoculants in the form of Fly Ash, which along with the SiC is bound to influence the tribological characteristics of the composites. The wear characteristics of these fabricated composites have been investigated considering various process parameters viz., the load, sliding distance, sliding velocity, wt% of SiC and wt% of Fly Ash, based on the operational requirements of the composites in real time considered from the earlier research studies and the influence of each parameter on the wear rate is discussed. Based on the different wear regimes obtained after characterization of the samples at different load conditions, Analysis of Variance (ANOVA) is carried out for each blend of the samples to statistically validate the experimental outcomes. The results have given sufficient substantiation to the fact that wear rate decreases with the inoculation. The wear rate and coefficient of friction (COF) is minimum viz., 0.00095 mm3/m, and 0.301 respectively for L9 experimental trial, i.e., for the composite specimens synthesized by reinforcing 7.5 wt% SiC, and 7.5 wt% Fly Ash for a load of 20 N, sliding velocity of 6 m s−1, and a sliding distance of 3000 m. The results have conferred that micro segregation (coring) of SiC and uniform dispersion of Fly Ash in the matrix enhances its tribological characteristics.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference24 articles.

1. Vibration mechanics of hybrid Al 5083/SiC/fly ash composite plates for its use in dynamic structures;Santhosh;J. Exp. Appl. Mech.,2017

2. Wear analysis of aluminum-fly ash hybrid composites;Nanda;Mater. Today Proc.,2020

3. Effect of particle size on the microstructure and distribution of Fly Ash for metal matrix composite applications;Ndudim Henry;Materials Today Proceeding,2021

4. Mechanical properties and age hardening response of Al6061 alloy based composites reinforced with Fly Ash;Govinda Rao;Mater. Sci. Eng. A,2020

5. Vibration characterization of SiC and fly ash dispersion strengthened aluminium 5083 composites;Santhosh;J. Aerosp. Eng. Technol.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3