Investigation of structural, mechanical, and corrosion properties of steel 316L reinforcement by hBN and TiC particles

Author:

Roohi Amir HORCID,Mirsadeghi Amirhossein,Sadooghi AliORCID

Abstract

Abstract The powder metallurgy process is commonly used to produce nanocomposite samples so that, their properties depend on the process parameters and the weight fraction of reinforcements. In the current study, producing metal matrix nanocomposite with steel 316L as a matrix and mixing of hBN/TiC nanoparticles as a reinforcement is conducted. The total weight percentages of reinforcements are 6% wt and 8% wt (i.e. with an equal proportion for each nanoparticle). The powders were mixed for 10 h and then compacted at different pressures (300 MPa and 400 MPa) by cold isostatic pressure (CIP) conditions. The compacted powders were sintered at different temperatures (1350 °C and 1450 °C), and times (2 h and 4 h) in the furnace. The microstructural analysis of nanocomposite was performed by SEM, XRD, EDX, DTA, and also FT-IR tests. The results showed that by increasing the weight fraction of nanoparticles the microhardness and wear rate improved and, on the contrary, the flexural strength and corrosion rate decreased. The optimum result for the microhardness and wear rate were achieved when the sample contains 8% wt nanoparticles, compacted at 400 MPa and sintered at 1350 °C for 4 h. As well, the highest flexural strength and corrosion rate belong to the sample compacted and sintered at 400 MPa, 1450 °C for 2 h.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3