Micro-nano twins appearing in ultrafine-grained Ti–6Al–4 V alloy induced by high-pressure water jet technology

Author:

Sun HaoORCID,Hu Minyi,Jiang Guanghui,Cao Guixia,Ge Jianhua,Zhang Shuqiong,Zhao Qunfang,Wang Chang,Zhang Yusheng,Ouyang QuanshengORCID

Abstract

Abstract In this study, the surface of an ultrafine-grained Ti–6Al–4 V alloy was treated with high-pressure water jet technology (HPWJT). Then, the microstructure of the alloy was investigated using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Three obviously different microstructural characteristics were observed from the treated surface to the matrix: ultrafine equiaxed grains with diameters from hundreds of nanometers to a few micrometers, micro-nano twins inside ultrafine equiaxed α grains, and an initial undeformed microstructure with ultrafine equiaxed grains. Formation of micro-nano twins in the subsurface was related to the special misorientation angle of neighboring grains. We proved the dependence of twinning on the crystallographic orientation and grain size of the α phase. In addition, the quantitative contributions of the micro-nano twins to the surface hardness of the alloy were calculated; micro-nano twins significantly improved the surface hardness of the alloy. This study provides a new easy method for introducing micro-nano twins on the surfaces of Ti and its alloys, and it may further improve the mechanical properties of these alloys.

Funder

Science and Technology Project of Guizhou Light Industry Technical College

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3