Exploring the structural properties and enhancement of Opto-electrical investigations for the synthesized epoxy based polymers with local nanoscale structures

Author:

Jilani WissalORCID,Fourati Najla,Zerrouki Chouki,Faugeras Pierre-Antoine,Guinault Alain,Zerrouki Rachida,Guermazi Hajer

Abstract

Abstract Epoxy networks of the diglycidyl ether of bisphenol A (DGEBA) were prepared using 4, 4′-diaminodiphenyl (44′DDS) and 3, 3′-diaminodiphenyl (33′DDS) sulfone diamines crosslinking hardeners. The structural, linear optical and mechanical properties of the investigated sample were analysed. Dynamic Mechanical Thermal Analysis and wide-angle x-ray diffraction were conducted to select a candidate presenting interesting thermo-mechanical properties and particular nanostructures embedded in an amorphous matrix. Our choice is therefore focused on DGEBA/33′DDS polymer for which, rocking curve measurements revealed the existence of two principal reflecting planes inclined to each other by about 0.27°. To highlight the potential effect of these interfaces, Thermally Stimulated Depolarization Current (TSDC) and Time Domain Spectroscopy measurements have been carried out. The application of the windowing polarization TSDC technique, in DGEBA/33′DDS polymer sample, gives an almost linear variation of the activation energies in the range between 3.65 and 4.09 eV. To our knowledge, this is the first study concerning epoxy polymers in which activation energies associated to ρ interfacial charge relaxations are calculated. To study the effect of the interfaces and trapped charge carriers, correlated by the angle x-ray diffraction measurements, the optical parameters were investigated. Our contribution will open a new avenue for developing the DGEBA/33′DDS polymer sustainable candidate in optoelectronic engineering applications.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3