Electrochemical properties of biogenic silver nanoparticles synthesized using Hagenia abyssinica (Brace) JF. Gmel. medicinal plant leaf extract

Author:

Murthy H C AnandaORCID,Desalegn Zeleke Tegene,Ravikumar C RORCID,Anil Kumar M R,Nagaswarupa H P

Abstract

Abstract The biogenic/green silver nanoparticles (g-Ag NPs) were synthesised by using the extract of indigenous medicinal plant of Ethiopia, Hagenia abyssinica (Brace) JF. Gmel. leaf extract for the first time, to investigate the synergistic effect of biomolecules towards the enhancement of electrochemical properties of NPs. The synthesized g-Ag NPs were characterized by UV-visible, UV-DRS, FT-IR, XRD, SEM, EDXA, TEM, HRTEM and SAED techniques. The maximum absorbance, λ max was found to be 461 nm for g-Ag NPs due to surface plasmon resonance. The energy gap, Eg of NPs, was found to be 2.31 eV. FTIR spectrum confirmed the presence of bioactive compounds responsible for possible capping and stabilisation of g-Ag NPs. The XRD analysis revealed that the g-Ag NPs are highly crystalline exhibiting sharp peaks for (111), (200), (220) and (311) planes in the diffraction pattern. SEM and TEM micrographs showed differently shaped Ag particles in addition to spherical shape. The average particle size of NPs was found to be 24.08 nm using imageJ analysis. EDX analysis confirmed the presence of Ag in the g-Ag NPs. In addition, the SAED pattern of g-Ag NPs presented concentric patterns for 4 major planes of crystalline silver. The d-spacing values of 0.2428 nm, 0.2126 nm, 0.1483 nm and 0.1263 nm corresponds to d111Ag, d200Ag, d220Ag and d311Ag lattice fringes respectively. The cyclic voltammetry (CV) results suggest that g-Ag NPs possess better electrochemical properties due to its lower charge transfer resistance value of 17 Ω. EIS studies too revealed better stability of g-Ag NPs as electrode materials.

Funder

Adama Science and Technology University

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3