Design of all-inorganic hole-transport-material-free CsPbI3/CsSnI3 heterojunction solar cells by device simulation

Author:

Xu Xingyu,Wang JianfengORCID,Cao Dan,Zhou Yun,Jiao Zhiwei

Abstract

Abstract The hole transport material (HTM)-free perovskite solar cells (PSCs) have attracted widespread interest due to enhanced stability and lowered cost as compared to the sandwich-type PSCs with an organic hole conductor. For the absorber layer, CsPbI3 has become a competitive candidate for its good chemical-components stability, excellent optoelectronic properties and most proper bandgap among inorganic halide perovskites. However, the power conversion efficiency of CsPbI3-based HTM-free PSCs is still much inferior to that of conventional ones. In this work, an all-inorganic-perovskite-heterojunction CsPbI3/CsSnI3 is proposed as the absorber and the HTM-free CsPbI3/CsSnI3 PSCs are investigated systematically through numerical simulation by using SCAPS-1D. Compared with the HTM-free PSCs employing a single CsPbI3 absorbing layer, the HTM-free CsPbI3/CsSnI3 PSCs have the extended absorption range and enhanced performance. The best cell efficiency is increased from 15.60% to 19.99% and from 13.87% to 19.59% for the cell with a back-front Au electrode and a back-front C electrode, respectively. It reveals that for the HTM-free CsPbI3/CsSnI3 heterojunction cells, C is a good choice for back-front electrode as it can achieve desirable cell performance with improved stability and lowered fabrication cost. These results indicate that the proposed HTM-free CsPbI3/CsSnI3 heterojunction cells are promising for photovoltaic applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3