Electrical modification of a composite electrode for room temperature operable polyethylene oxide-based lithium polymer batteries

Author:

Rajagopalan Balasubramaniyan,Kim Min,Kim Do YoubORCID,Suk Jungdon,Kim Dong Wook,Kang Yongku

Abstract

Abstract Lithium polymer batteries (LPBs) are considered to be the most promising alternatives to current lithium-ion batteries (LIBs), which have been known to exhibit certain safety issues. However, the relatively poor electrochemical performances of LPBs hinder their practical usage, particularly at high C-rates, moderate temperatures, and/or with high loading densities. Therefore, this study analyzes the use of a novel composite electrode for manufacturing room-temperature operable LPBs with high loading densities. Rapid decay in the rate capabilities of LPBs at high C-rates is found to be attributable to the increased electrical resistance in an electrode. To account for this, this study modified the composite electrode with various conducting fillers. Subsequently, the effect of the type and content of the conducting fillers on the performance of LPBs was systematically investigated using the composite electrode. The incorporation of the conducting fillers in the lithium iron phosphate (LFP) composite electrode was found to effectively reduce the electrical resistance and consequently improve the electrochemical performance of LPBs. Furthermore, LFP composite electrodes with a mixture of structurally different graphene (G) and carbon nanotube (CNT) (1 wt%) were observed to demonstrate synergistic effects on improving the electrochemical performance of LPBs. The results obtained in this study elucidate that the facilitated electrical conduction within a composite electrode is critically important for the performance of LPBs and the expedited diffusion of Li+.

Funder

National Research Council of Science and Technology

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3