Microscopic geometrical structure analysis of 2D and 2.5D fabrics based on a simple predictive model

Author:

Wang YangORCID,Wang Qiuhui,Yang Jian

Abstract

Abstract The braided structure has a great influence on the properties of composites, and it is of great significance to predict and design the microscopic geometrical structure of fabric. In this paper, a simple model for predicting the yarn morphologies in 2D plain weave fabric and 2.5D shallow-cross bending fabric is established. Compared with the test results, this predictive model has relatively high prediction accuracy and the influences of warp/weft density and yarn fineness on the maximum pore volume in the fabric are analyzed in detail. Based on this model, assume the yarn fineness and warp density is 3 K and 3/cm, respectively, when the weft density increases from 2/cm to 9/cm, and the volume fraction increases from 15% to 35%, the maximum pore volume in the 2D fabric decreases from 2.69 mm3 to 0.195 mm3, compared with that in the 2.5D fabric decreases from 2.67 mm3 to 0.125 mm3. At the same volume fraction, the lower the yarn fineness, the smaller the maximum pore volume in 2D and 2.5D fabrics. In addition, when the sum of the warp and weft yarn densities is a certain value, the maximum pore volumes in 2D and 2.5D fabrics decrease as the weft yarn densities increases. Conversely, as the warp density increases, the maximum pore volumes increase.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3