Fe-based sintered matrix for diamond tools: microstructure, mechanical performance and crack initiation and propagation characteristics

Author:

Gao YaORCID,Zhang Hongsong,Ma Haishu,Liu Xuhe,Huang Yuchun,Meng Yubo

Abstract

Abstract To design Fe-Cu-Sn-Ni metal binders for diamond tools and optimize the performance of binders, Fe-based binders were prepared by hot-press sintering method using Fe powder, Cu powder, Sn powder and Ni powder as the raw materials. The phase constitution, microstructure, mechanical properties and crack formation were evaluated. Results showed that Fe-based matrixes are composed of Cu3Sn intermetallic compounds and several solid solutions, such as α-Fe, γ(Fe,Ni), and Cu13.7Sn. The relative high Sn content can increase the hardness of the sintered bulk samples and significantly reduce the bending strength. With the increase of Ni content, the hardness increases gradually, while the bending strength increases firstly and then decreases. The cracks initiate from brittle Cu3Sn intermetallic phases and quickly propagate in the brittle phases or along the interface between Cu3Sn intermetallic compounds and γ(Fe,Ni) phases. The propagation of crack can be impeded by Cu13.7Sn solid solution.

Funder

Doctoral Foundation of Henan University of Engineering

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3