Microstructure and mechanical properties of Cu-ZTA cermet prepared by vacuum hot pressing sintering

Author:

Sun Da-Ming,Jiang Xiao-songORCID,Sun Hong-liang,Song Ting-feng,Luo Zhi-ping

Abstract

Abstract In this paper, seven copper-zirconia toughened alumina (Cu-ZTA) cermets were prepared by vacuum hot pressing sintering (VHP). The effects of different binder content and different particle size of ZTA particles on the mechanical properties of Cu-ZTA cermets were investigated. The microstructure of the composites was studied by x-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The hardness of the material was measured by micro Vickers hardness tester. The results show that the solid solution strengthening occurs in the hot pressing sintering process, the formation of copper-based solid solution increases the hardness of the matrix, the highest is  192.04 HV0.1. The ZTA particles are uniformly distributed in the matrix, and the surface of the ZTA particles is surrounded by a continuous coppermatrix and second phase. Two interfaces are formed between ZTA particles and Cu matrix. One is the ZTA/Cu interface formed by the substitution of Cu atoms for Ni atoms, it is a mechanical meshing interface which extends the service life of cermet under mechanical stress and thermal stress. The other interface is the reaction bonding interface of Cu3Ti3O and TiOx. The friction and wear test results show that the use of low-diameter ZTA particles and increasing the content of Cu binder will improve the friction and wear properties of Cu-ZTAcermet. Under the action of stress, the fracture occurs at the interface of Cu/ZTA, and the wear, fracture and extraction of ZTA ceramics cause the failure of Cu-ZTA cermet.

Funder

the Research Council of Norway

China Postdoctoral Science Foundation

Shanghai Institute of Technical Physics

National Natural Science Foundation of China

Sichuan Science and Technology Support Program

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3