Plant extracted natural fluorescent protein C-phycocyanin doped in PVA nanofibers for advanced apparel application

Author:

Ghaffar AbdulORCID,Mehdi MujahidORCID,Hussain Sadam,Pirzado Azhar Ali Ayaz,Shah Sabab Ali,Alataway Abed,Dewidar Ahmed Z,Elansary Hosam OORCID

Abstract

AbstractNatural dyes are gaining a great deal of attention due to their eco-friendly and sustainable properties for advanced apparel applications. However, the reproducibility and accessibility of various colors using natural dyes remain challenging. In this study, plant-extracted fluorescent protein C-phycocyanin (CP) is used as a natural dye source and doped in polyvinyl alcohol (PVA) nanofibers via electrospinning for advanced apparel applications. The prepared nanofibers show a smooth and bead-free surface morphology. The FTIR results confirmed the formation of PVA nanofibers followed by a major peak at 3304 cm−1due to the stretching of hydroxyl groups. Subsequently, CP-doping in PVA nanofibers is observed by the N–H deformation peaks at 1541 cm−1; C–N stretching vibrations at 1250 cm−1and 1092 cm−1; and the C=O stretching vibrations of the carboxyl group at 1722 cm−1, respectively. Thus, CP-doped PVA nanofibers exhibit a good color strength (K/S) of 0.2 having a blue color tune and good color fastness properties. The mechanical strength of PVA nanofibers increased from 6 MPa to 18 MPa, due to crystalline characteristics endowed by the dope dyeing technique. Further, CP-doped PVA nanofibers exhibit homogeneous bright red fluorescence in individual nanofibers. Therefore, the proposed CP-doped PVA nanofibers can be used for flexible advanced apparel and biosensor applications.

Funder

King Saud University

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3