Optimization of plasma spray process variables to attain the minimum porosity and maximum hardness of the LZ/YSZ thermal barrier coatings utilizing the response surface approach

Author:

Mathanbabu MORCID,Thirumalaikumarasamy DORCID,Tamilselvi M,kumar Somasurendra

Abstract

Abstract Lanthanum zirconate (LZ) has emerged as a novel thermal barrier coating (TBC) material because of its higher temperature phase stability, and low sintering ability than the current standard yttria-stabilized zirconia (YSZ). In order to combine the advantages, LZ and YSZ feedstock powders are blended with predetermined weight ratios (50:50) as composite coatings. The leading issue in developing the composite coating using the atmospheric plasma spray method (APS) is finding the optimum range of input parameters to attain the desired coating properties. This issue can be resolved by developing empirical relations to find the porosity and microhardness of the coating by the atmospheric plasma spray method (APS). Spray parameters such as input power, spray distance, and powder feed rate are vital in determining the coating quality. Three variables and five levels of central composite rotatable design (CCD) to reduce the overall run of the experiment were utilized in the research. The empirical relations were predicted to find the porosity and microhardness of the specimens with APS process parameters, and the empirical relations were examined through ANOVA. Optimizing the plasma spray parameters was done using response surface methodology (RSM), which provides the minimum porosity and maximum hardness. It is validated using surface response graphs, contour plots, and overlay plots. As a result, the input power has the greatest impact on the coating properties among the three variables, and the standoff distance and powder feed rate are the subsequent important spray parameters.

Funder

Defense Research and Development Organisation

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3