Lamellar shape lead tungstate (PbWO4) nanostructures as synergistic catalyst for peroxidase mimetic activity

Author:

Shad Naveed Akhtar,Sajid Muhammad Munir,Javed YasirORCID,Ikram Muhammad,Hussain Muhammad Irfan,Nawaz Somia,Afzal Amir MuhammadORCID,Hussain Syed ZajifORCID,Amin Nasir,Yousuf Imran

Abstract

Abstract Tungstate based nanomaterials have emerged as important class in transition metal oxide. In this study, Lead tungstate (PbWO4) nanostructures with lamellar morphology were prepared by hydrothermal method. The synthesized materials were characterized by XRD, SEM, FTIR, DLS, BET and PL. Nitrogen adsorption-desorption measurements indicated that the surface area of the synthesized lamellar morphology was ∼86.225 m2 g−1. The lamellar-like morphology showed enhanced peroxidase-like activity owing to the large surface area, higher substrate interaction and efficient electron transportation. The results indicated higher reaction velocity (Vmax = 13.56 × 10−8 M s−1) and low Michaelis-Menten constant (km = 0.325 mM) value for nanostructures, providing evidence for higher affinity of novel structures towards the substrate and increased peroxidase-like activity. Finally, biocompatibility test was conducted by performing cytotoxicity experiments of PbWO4 nanostructures on MTT assays.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3