Impact of V substitution on the physical properties of Ni–Zn–Co ferrites: structural, magnetic, dielectric and electrical properties

Author:

Hossain M D,Jamil A T M K,Hasan M R,Ali M A,Esha I N,Hossain Md Sarowar,Hakim M A,Khan M N IORCID

Abstract

Abstract We have investigated the Vanadium- (V) substituted Ni–Zn–Co ferrites where the samples are prepared using the solid-state reaction technique. The impact of V5+ substitution on the structural, magnetic, dielectric and electrical properties of Ni–Zn–Co ferrites has been studied. The XRD analysis confirms the formation of a single-phase cubic spinel structure. The lattice constants have been calculated both theoretically and experimentally along with other structural parameters such as bulk density, x-ray density and porosity. The FESEM images are studied for analyzing the surface morphology. FTIR measurement confirms spinel structure formation. The saturation magnetization (M s), coercive field (H c) and Bohr magnet on (μ B) are calculated from the obtained M-H loops. The temperature-dependent permeability is studied to obtain the Curie temperature. The frequency and the composition dependence of permeability are also analyzed. Frequency dependent dielectric behavior and ac resistivity are also investigated. An inverse relationship is observed between the composition dependent dielectric constant and ac resistivity. The obtained results such as the electrical resistivity, dielectric constants and magnetic properties suggest the appropriateness of the studied ferrites in microwave device applications.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3