Predicting the effect of fiber orientations and boundary conditions on the optimal placement of PZT sensor on the composite structures

Author:

Samyal Rahul,Bagha Ashok Kumar,Bedi Raman,Bahl ShashiORCID,Saxena Kuldeep K,Sehgal ShankarORCID

Abstract

Abstract In this paper, the modal-model of the composite structure is predicted and viewed to decide the optimal position of the PZT sensors on the composite structures. The novelty of this work is to systematically study the effect of fiber orientations and boundary conditions on the modal-model and the optimal location of the PZT sensors on the composite structures. The glass fibers are reinforced in a polyester matrix at different fiber orientations such as 0°, 30°, 45°, 60° and 90°. It is used for various engineering applications, especially in the aerospace and automobile sector, and it is very important to measure its dynamical response. The PZT patches can be embedded on the composite structures to measure their vibrational response. In this paper, ABAQUS software is used to build the finite element model of the PZT-composite structure. The composite structure is modeled with different boundary conditions. It is observed that the orientation of the fibers as well as the boundary condition directly put their effect on the modal-model of the composite structure and also on the selection of the optimal position of the PZT patches. It is found that the optimal position of the PZT directly depends upon the fiber orientation.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3