Simple two-step synthesis of Ag/ZnO nanoparticles with enhanced photocatalytic response

Author:

Flores-Castañeda MarielaORCID,Meza Lilibeth,Guevara-Martínez Santiago José,Pérez-Centeno AORCID,Quiñones-Galván J GORCID

Abstract

Abstract This study presents a simple two-step synthesis method for the fabrication of Ag/ZnO nanocomposites to improve the photocatalytic response of ZnO. The synthesis involves ZnO nanoparticles that were fabricated from the thermal decomposition of commercial zinc acetate. In order to produce Ag/ZnO nanoparticles in a simple two-step process, ZnO nanoparticles were mixed with Ag nanoparticle suspensions previously obtained by the laser ablation of solids in liquids technique at three different fluences. Structural characterization of ZnO powders revealed the presence of single phase wurtzite ZnO nanoparticles with crystal sizes of 20 nm. On the other hand, XRD patterns for a composite sample revealed the presence of signals associated to both ZnO and Ag suggesting that silver nanoparticles were attached to the ZnO particles surface. Optical characterization of the ZnO powders, carried out by UV–vis spectroscopy, showed a strong absorption band centered at 380 nm, which is associated to excitonic transitions in ZnO nanoparticles, whilst absorption measurements of silver nanoparticles colloids revealed the presence of a strong band centered near 412 nm. This band shifts to shorter wavelengths with increasing fluence from 2.6 to 6.2 J cm−2, indicating changes in nanoparticles size. Photocatalytic degradation tests of methylene blue under UV irradiation were carried out using pure ZnO, Ag colloids and Ag/ZnO nanoparticles. After the first 30 min of irradiation, it was observed that the silver nanoparticles reached degradation percentages of 16, 22 and 29% for samples synthesized at 2.6, 4.2 and 6.2 J cm−2, respectively. Meanwhile the ZnO sample reached a value of 13% after 30 min. Regarding the Ag/ZnO composite sample, the percentage of degradation after 30 min was 36%, demonstrating a considerable enhanced photocatalytic activity as compared to ZnO. After 24 h irradiation, Ag/ZnO degraded 95% of the methylene blue solution. It was observed that decorating ZnO with laser produced silver nanoparticles accelerates the photocatalytic response of ZnO by enhancing the activity at short times.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3