The structural, magnetic, optoelectronic, and mechanical characteristics of NaGeX3 perovskites under pressure for soler-cell applications

Author:

Ovi Istiak Ahmed,Hasan MD RatulORCID,Apon Imtiaz AhamedORCID,Zahra Fatema-TuzORCID

Abstract

Abstract This study examines the physical properties of germanium-based halide perovskite through Density Functional Theory (DFT) computations. The physical, optical, mechanical, and magnetic properties of NaGeX3 (X = Cl, Br, and I) were examined with the effects of hydrostatic pressure applied externally. The compounds were subjected to pressure variations ranging from 0 to 5 GPa. The results indicate a decrease in the band gap from the infrared to the visible spectrum. For NaGeCl3, NaGeBr3, and NaGeI3 the band gap decreased from 0.766 eV, 0.497 eV, and 0.400 eV to 0 eV, respectively, indicating the metallic behavior. The mechanical properties of NaGeX3 (X = Cl, Br, and I) demonstrate that for all three compounds, Bulk Modulus (B), Shear Modulus (G), Young’s Modulus (E), Poisson’s ratio (ν), and Pugh’s ratio B / G all increase with increasing pressure. It demonstrates that all these NaGeX3 (X = Cl, Br, I) compounds are ductile in nature. The compounds are determined to be diamagnetic based on their magnetic property investigation, which reveals no notable changes in behavior up to 5 GPa of rising pressure. To gain a better understanding of the properties of the material when incident light strikes its surface, researchers also looked in at optical absorption, reflectivity, dielectric constants, refractive index, conductivity, and loss functions. Pressure-induced NaGeX3 perovskite compounds, where X = Cl, Br, and I, show an increase in dielectric constant as pressure rises, suggesting a decrease in charge carrier recombination rates and a possibility for higher optoelectronic device efficiency. For all NaGeX3 compounds (where X = Cl, Br, and I), the maximum absorption coefficient peaks are located around 3 eV, indicating that increasing pressure increases optical conductivity. Additionally, they have significantly low reflectance throughout the visible spectrum and very narrow band gap, which indicates significant absorption and the possibility of effective Near-Infrared (NIR) Sensors, photodetector etc applications.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3