Substitution of Ca2+ by Sn2+ and Sr2+ cations in P. placenta shells and single-crystal calcite through ion exchange reactions

Author:

Junio Jonathan BORCID,Conato Marlon T,Mercado Candy CORCID

Abstract

Abstract Tin (Sn2+) and strontium (Sr2+) are potential replacements to lead (Pb2+) in perovskite synthesis since Sn is on the same IVA group in the periodic table as Pb while Sr is a promising alternative according to Goldschmidt’s rules and quantum mechanical analysis. The crystal radii of their ions are also nearly identical with Pb2+ = 1.33 Å, Sn2+ = 1.36 Å, and Sr2+ = 1.32 Å. In this study, both Sn and Sr were explored in transforming calcite, a polymorph of calcium carbonate (CaCO3) into a leaving group in the first step of a sequential ion-exchange reaction towards perovskite formation. Instead of forming the intermediate tin carbonate (SnCO3), the reaction resulted in the formation of gypsum or calcium sulfate dihydrate (CaSO4.2H2O) and Sn in the form of oxides. These oxides, however, are useful especially when these are in the form of tin dioxide-coated CaCO3 shell-core structures—having demonstrated flame retardant and smoke suppressant properties. On the other hand, calcite was successfully transformed into strontium carbonate (SrCO3) or strontianite through the cation exchange reaction. X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) were used to observe the resulting materials and understand the transformation of both Placuna placenta (or Capiz) shells and single-crystal calcite from the ion-exchange reactions.

Funder

Engineering Research and Development for Technology (ERDT), Department of Science and Technology (DOST), Republic of the Philippines

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3