Alternative dynamic torsion test to evaluate the elastic modulus of polymers

Author:

Piedade Lucas PereiraORCID,Pintão Carlos Alberto FonzarORCID,Foschini Cesar RenatoORCID,Silva Marcos Ribeiro daORCID,Azevedo Neto Nilton FrancelosiORCID

Abstract

Abstract This work presents an alternative for the determination of the torsion modulus, G, of polymers. These materials may be subjected to shear stresses in some structural applications; thereby, the knowledge of G is of great interest. For this purpose, a mechanical system featuring a simplified torsion pendulum version and a rotational motion sensor (RMS) coupled to it was used to establish an angular position as a function of time. The applied technique is considered non-destructive and makes it possible to obtain G without the Poisson’s ratio through an equation derived from mechanical spectroscopy and material strength. The main goal is to present and validate the employment of this method for polymers. Therefore, circular cross-sectional samples of extruded polytetrafluoroethylene (PTFE) were subjected to torsional stresses, in which a physical and quantitative explanation is given for the frequency and G curves as a function of the prefixed rotational inertia (I), length (L), and diameter (d). Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were also made to ensure the reliability of data. It is possible to establish an L/d ratio, which explains why G converges to a single value when the sample dimensions are different from each other. It was found that G is approximately 350 MPa for an L/d ratio equivalent to 10.64. Such a value is within limits found in the literature, opening the possibility of assessing other polymers.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3