Synthesis of a Zn/Fe–N–C electrocatalyst towards efficient oxygen reduction reaction via a facile one-pot method

Author:

Zhang Xiangkun,Li Yun,Ren Jingru,Huang YongminORCID

Abstract

Abstract The high price and unsatisfactory stability of Pt-based catalysts for the sluggish oxygen reduction reaction (ORR) severely limit the development of fuel cells and metal-air batteries. Therefore, developing Pt-free electrocatalysts with excellent activities and stabilities is significant. Herein, an efficient Zn/Fe–N–C electrocatalyst is synthesized via a facile one-pot method. Owing to its curved nanosheet structure, appropriate microporous and mesoporous specific surface areas, abundant defects and high Fe–Nx content, Zn/Fe–N–C exhibits remarkable ORR activity and stability in alkaline electrolyte. Its half-wave potential is 0.843 V, which is 10 mV higher than that of Pt/C. Moreover, Zn/Fe–N–C also manifests satisfactory performance in a practical Zn-air battery. Its maximum output power density is 108.5 mW cm−2, which is equivalent to that of Pt/C. In this work, a simple synthesis method for highly active ORR electrocatalyst is provided, which can be implemented for the future design and synthesis of electrocatalysts used in fuel cells and metal-air batteries.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3