Abstract
Abstract
Laser surface texturing (LST) is an effective surface engineering technique that can improve the efficiency and reliability of a tribosystem. In this study, surface textures with combined dimple patterns were prepared on a Ti-6Al-4V alloy surface using a Nd:YAG pulsed laser. Sliding dry and MoS2 solid-lubricated experiments were performed to assess the tribological characteristics of these specimens using a ball-on-disk mode. An L9 (34) orthogonal array table was used to prepare an experimental plan, which contained three parameters: the sliding speed, applied load, and the area density of dimple on the friction properties. The results show that the MoS2-added textured surface effectively decreased the coefficient of friction and reduced adhesion wear compared to an untextured surface. Analysis of variance (ANOVA) suggested that the texture area density has a major effect on the friction coefficient at a confidence level of 99%, followed by the applied load and sliding speed. Scanning electron microscopy (SEM) revealed that the wear mechanisms were adhesive and abrasive wear, and a transfer layer from the Ti-6Al-4V alloy was obtained on the counterpart ceramic ball. In conclusion, a higher texture area density is advantageous to increase the friction and wear performance of the Ti-6Al-4V alloy surface.
Funder
National Research Foundation of Korea
Korea Institute for Advancement of Technology
Korea Institute of Energy Technology Evaluation and Planning
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献