Adsorption performances and electrochemical characteristics of methyl blue onto magnesium-zinc ferrites

Author:

Xu Shuping,Liu DandanORCID,Liu Aihua,Sun Fu,Pan ShengyingORCID,Ouyang HezhongORCID

Abstract

Abstract A novel and facile rapid combustion approach was developed for the controllable preparation of small size and easy recovery magnesium-zinc ferrites for methyl blue (MB) removal in dye solution. The effects of prepared criteria of x value, calcination temperature, and the amount of ethanol on the average grain sizes and magnetic property were reviewed. The characterization results displayed that Mg0.5Zn0.5Fe2O4 nanoparticles met the expectations of the experiment at the calcination temperature of 400 °C with absolute ethanol volume of 20 ml, and they were selected to remove MB. The adsorption process belonged to chemical adsorption on the basis of the pseudo-second-order model. The electrochemical characteristics of MB onto the prepared nanoparticles were analyzed by cyclic voltammetry (CV). The influences of pH and cycle times on the removal efficiency were investigated. When the pH went beyond 3, the removal efficiency of MB onto the magnetic Mg0.5Zn0.5Fe2O4 nanoparticles maintained above 99%,the maximum adsorption capacity was 318.18 mg g−1. After seven cycles, the relative removal rate of MB remained 96% of the first one.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3