Effect of carburizing time treatment on microstructure and mechanical properties of low alloy gear steels

Author:

Boumediri HaithemORCID,Touati Sofiane,Debbah Younes,Selami Salim,Chitour Mourad,Khelifa Mansouri,Kahaleras Mohamed said,Boumediri Khaled,Zemmouri Amina,Athmani Moussa,Fernandes Filipe

Abstract

Abstract Gas carburizing significantly enhances the surface properties of low-alloy gear steels, resulting in superior micro-hardness, layer thickness, carbon content, and overall mechanical properties. Unlike other thermochemical processes such as nitriding and carbonitriding, which have limitations in core properties and hardening depth, gas carburizing offers unmatched surface hardness, wear resistance, and mechanical strength. This makes it ideal for demanding applications in the automotive, aerospace, and manufacturing industries. In this research, samples were gas-carburized for 4, 6, or 8 h. The results showed significant improvements: micro-hardness increased from approximately 140 HV to over 819 HV, and the surface layer thickness grew by more than 41%, from 1166 μm to 1576 μm. Additionally, the carbon content in the surface layer increased by over 450%, reaching up to 0.94 wt%. Clear correlations were observed between the duration of heating and the mechanical properties. Longer heating times, particularly after 8 h, raised ultimate tensile strength from 427.29 MPa to 778.33 MPa, while simultaneously decreasing elongation from 26.07% to 2.88% and resilience from 180 J cm−2 to 6.66 J cm−2. This optimization not only enhances surface hardness and durability but also improves key mechanical properties such as tensile strength, stiffness, resilience, and overall mechanical performance.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3