The effects of Mg2+ concentration, (NH4)2SO4 concentration and current density on electrolytic manganese process

Author:

Wang Hai-Feng,Qin Ji-Tao,Tian Jia-Yu,Wang Jia-WeiORCID,Zhao Ping-Yuan,Lu Fang-hai

Abstract

Abstract In this paper, the effects of Mg2+ concentration, (NH4)2SO4 concentration and current density on the current efficiency, cell voltage and morphology of electrolytic manganese metal were studied. The current efficiency of electrolytic manganese decreased with the increase of Mg2+ concentration in the electrolyte; Increasing the concentration of (NH4)2SO4 , the current efficiency of electrolytic manganese showed a gradually increasing trend. By changing the current density, the current efficiency of electrolytic manganese increased first and then decreased. When the current density was 400 A·m−2, the current efficiency was the highest, it was about 66.63%. The cell voltage in the process of manganese electrolysis was independent of Mg2+ concentration and (NH4)2SO4 concentration, but only positively related to current density. Through the macroscopic analysis of the cathode plate, the greater the current efficiency was, the brighter the color of the metal manganese sheet was, it shew a silver white, and the dendritic growth of metal manganese was less. From the microscopic morphology of the manganese metal sheet, the electrolytic manganese metal was formed by stacking metal manganese sheets, each metal manganese sheet exhibited a regular hexagonal structure, the shape was similar to a ‘pyramid’, it had a better compactness, in which the better the current efficiency was, the better the compactness of the electrolytic manganese metal was. Under different experimental conditions, crystal plane (330,411) was the strongest and best orientation for the growth of electrolytic manganese. Cyclic voltammetry experiments showed that Mg2+ was not beneficial to electrodeposition of manganese, the increase of (NH4)2SO4 was beneficial to improve the current efficiency, and it was consistent with the conclusion of electrolysis experiment.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of Current Density on Growth Law of Manganese Electrodeposition;Russian Journal of Electrochemistry;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3