Abstract
Abstract
To realize the hyperspectral camouflage under the background of vegetation, a camouflage polyvinyl alcohol coating containing lithium chloride and green pigment particles of chromium sesquioxide (Cr2O3) was prepared on a stainless-steel substrate. Based on the four flux Kubelka-Munk model, the reflectances of the coatings with different volume fractions of Cr2O3 (f
c) were predicted and compared with those of the membranes without substrate. The results show that when f
c reaches 0.8%, the 0.2 mm thick coating can conceal the reflectance characteristics of the stainless-steel substrate. The reflectances of the coatings with the volume fraction of water (f
w) in the range from 0% to 50% were also calculated via the model. It is found that the reflectances around 1460 nm and 1940 nm decrease with increased f
w due to the significantly enhanced absorption coefficient, and the correlation coefficient between the spectral reflectances of the camouflage coating and an Osmanthus fragrans leaf increases from 0.913 to 0.954, indicating that the coating camouflage performance can be improved by increasing f
w.
Funder
Natural Science Foundation of Jiangsu Province
Changzhou University Fund
National Natural Science Foundation of China
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献