Investigation on the roll-to-plate imprinting of metallic surface micro dimples

Author:

Gao ZhaoyangORCID,Zhang Hui,Wen YufengORCID

Abstract

Abstract Large-area functional metallic surface microstructures have been increasingly utilized in various industrial fields. As an efficient and economical method in fabricating large-area functional metallic surface microstructures, the roll-to-plate (R2P) imprinting process with the flat die was proposed to experimentally fabricate functional micro dimple arrays on the surface of the metallic substrate. The effects of the rolling direction, die cavity aspect ratio, die feature density and grain sizes on the forming results were investigated using pure copper specimens with different grain sizes. The transfer ratio of surface structures decreases with the increase of the die feature density and die cavity aspect ratio, respectively. The flowing differences of material in the rolling direction and transverse directions lead to the inconformity of section profile of formed dimples in the two directions. The depth of dimples in the rolling direction is prominently greater than that in the transverse direction. The depth difference of dimples in the two directions increases with the increase of rolling depth and reduces with the increase of die cavity width. The surface morphology of formed specimens obviously depends on the material flowing direction, grain sizes and rolling depth. The surface roughness, surface roughness scatter and flatness of the formed specimens increase with the grain size. The symmetry of cross sectional micro hardness distribution on both sides of the formed dimple in the rolling direction is poorer than that on both sides of the formed dimple in the transverse direction. The asymmetry of cross sectional micro hardness distribution on both sides of the formed dimple in the rolling direction becomes more prominent with the increase of grain sizes.

Funder

the Scientific Research Foundation of Nanjing Vocational University of Industry Technology

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3