Finite element simulation on residual stress during immersion quenching and pre-stretching of Al7055 thick plates

Author:

Zhu KaiORCID,Xiong Baiqing,Li Xiwu,Zhang Yongan,Li Zhihui,Li YananORCID,Wen Kai,Yan Lizhen

Abstract

Abstract During the immersion quenching process, severe temperature changes and significant temperature differences between the core and superficial area can give rise to high residual stresses within the aluminum alloy thick plate to cause subsequent machining distortion of the thin-walled part. Reducing the residual stress within the thick plate can effectively minimize the distortion in part. In this research, ABAQUS software was adopted to simulate the internal temperature and stress fields of thick plates of Al7055 alloy during the quenching and pre-stretching processes, sequentially and respectively. In addition, the x-ray residual stress measurement method was used to measure and characterize the surface residual stress of the plates. The results indicate that the medium temperature affects residual stress inside the thick plate significantly during the immersion quenching process. The level of which inside the plate gradually increases as the medium temperature decreases. Further, the pre-stretching treatment can effectively reduce residual stresses within the thick plate, and the residual stress level gradually decreases with the pre-stretching ratio increasing. The experimental results verify the feasibility of numerical simulation to predict the status of quenching stress in thick plates. Subsequently, a simulation study for material removal processes was carried out based on the above studies. The results reveal that the thin-walled part’s machining distortion degree improves as the raw thick plate’s initial quench residual stress level decreases.

Funder

National Program on Key Research and Development Project of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference37 articles.

1. Recent advances in the development of aerospace materials;Zhang;Prog. Aerosp. Sci.,2018

2. Recent developments in advanced aircraft aluminum alloys;Dursun;Materials & Design (1980–2015),2014

3. Progress in structural materials for aerospace systems;Williams;Acta Mater.,2003

4. The current state and future of aluminum alloy applications for railway rolling stock;Sakai;Journal of Japan Institute of Light Metals,2007

5. Application of 7000 series aluminum alloy in rail transit vehicle car body;Jiang;Electric locomotives & mass transit vehicles,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3