The low and high temperature thermoelectric properties of Yb3Si5

Author:

Ahmed FahimORCID,Valenta JaroslavORCID,Tsujii Naohito,Hussain Ahmad,Jabeen Nawishta,Mori Takao

Abstract

Abstract Silicides have been of great interest for thermoelectric applications due to their abundant elements as well as thermal and chemical stability. In this paper, we examined the thermoelectric properties of Yb3Si5 polycrystalline samples in a wide temperature range from 10 to 800 K. The temperature dependence of the Seebeck coefficient was successfully analyzed by assuming a narrow 4f quasi-particle band, indicating the intermediate valence state of Yb2+-Yb3+ is responsible for the high power factor. A very large maximum power factor of ∼ 4.70 mWm−1K−2 was observed at 72 K and room temperature value ∼ 1.56 mWm−1K−2 for Yb3Si5. These results shows that Yb-Si compounds have large potential to be used as low temperature TE applications in the future. We also studied the Co-doping effect in Yb3Si5, namely, Yb3Co x Si5−x where x = 0, 0.1, 0.15, 0.20 and investigated their thermoelectric properties. While powder X-ray diffraction analysis confirmed all main peaks indexed to Yb3Si5 phase, SEM and EDX analyses revealed that Co is precipitated as metal particles, forming a composite material with Yb3Si5 phase. Thermoelectric properties of the Co-doped samples are also reported.

Funder

JSPS KAKENHI

JST Mirai Program

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3