Abstract
Abstract
The static recrystallization (SRX) behavior of an ultrahigh-strength stainless steel (UHSSS) was investigated via double-hit isothermal compression tests. The results revealed that the kinetics of static recrystallization and the corresponding microstructural evolution were not only prominently influenced by the deformation parameters and initial microstructures but also suppressed due to the precipitation of M6C carbides below 1050 °C, which sufficiently pinned the boundaries. Numerical models for predicting the recrystallized fraction and grain sizes were proposed based on the experimental results. The kinetics model could predict the process of SRX in the deformation temperature range from 1050 °C to 1150 °C well, whereas there were some deviations between the predictions and experimental results due to the interaction of the M6C carbides and SRX when the deformation temperature was below 1050 °C.
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献