Experimental and numerical study for direct powder bed selective laser processing (sintering/melting) of silicon carbide ceramic

Author:

Montón AlejandroORCID,Abdelmoula MohammedORCID,Küçüktürk GökhanORCID,Maury FrancisORCID,Grossin DavidORCID,Ferrato Marc

Abstract

Abstract The study was carried out to investigate the manufacturing possibility of Silicon Carbide (SiC) by direct Powder Bed Selective Laser Processing (PBSLP) experimentally and numerically. The experimental study was carried out by means of PBSLP while the numerical study was accomplished by developing a CFD model. The CFD model simulates accurately realistic conditions of the PBSLP process. A user-defined code, that describes the process parameters such as laser power, scanning speed, scanning strategies, and hatching distance has been developed and compiled to ANSYS FLUENT 2020 R1. Also, the model was validated with the available published data from the literature. The model was used to deeply analyse and support the results obtained through the experimental runs. Different values of laser power and scanning speeds with scanning strategy in the form of a continuous linear pattern and rotated by 90 degrees between layers were studied. The laser power is ranging from 52W to 235 W while the scanning speed is ranging from 300 to 3900 mm s−1. The results showed that the direct PBSLP of SiC is possible with the optimization of the process parameters. Layer thickness and hatching distance are the most important parameters that needed to be optimized. Also, the laser power and scanning speed needed to be adjusted so that the scanning temperature was between the sintering and the decomposition limits. The good agreement between experimental and simulation results proved the power and ability of the developed CFD model to be a useful tool to analyse and optimize future experimental data.

Funder

European Union

Marie Sklodowska-Curie Grant Agreement

Framework Program

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference43 articles.

1. Physical Properties of Silicon Carbide;Kimoto,2014

2. Full-SiC derotator optics for METimage: preliminary design and verification approach;Renotte,2019

3. Full-SiC EUCLID’s very large telescope;Bougoin,2019

4. Design and proof of concept of an innovative very high temperature ceramic solar absorber;Leray,2017

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3