Different roles of stacking fault energy and diffusivity in the creep performance of nickel-based single-crystal superalloys

Author:

He ChuangORCID,Huang Taiwen,Yang Wenchao,Wang Xiaojuan,Zhang Jun,Guo Min,Liu Lin

Abstract

Abstract Two nickel-based single-crystal (SC) superalloys (designated T6 and T13) were investigated in order to reveal the effects of stacking fault (SF) energy and diffusion on their high-temperature creep behavior. In this study, the effect of dislocation spacing on creep was the same between T6 and T13. The microstructure and deformation rate attained prior to 1% creep were investigated in detail. Several differences were detected in the two superalloys, the reasons for these differences were discussed. The results suggested that the SF energy of the γ matrix was the key factor affecting development of the dislocation network. Because the matrix of the T6 superalloy has lower SF energy than T13, the cross-slipping of dislocation was more difficult in the early stages of creep, which resulted in lower levels of dislocation propagation and of formation of the dislocation network. When creep had entered the steady stage, the key process controlling high-temperature creep was atomic migration in the γ matrix, and the creep rupture life was lengthened by reducing the penetration of dislocations into the γ′ raft and slowing down its topological inversion.

Funder

National Key Research and Development Program

Natural Science Basic Research Plan in Shaanxi Province of China

National Science and Technology Major Project

Key Research and Development Program of Shaanxi Province

National Natural Science Foundation of China

Research Fund of the State Key Laboratory of Solidification Processing

National High Technology Research and Development Program of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3