Effect of centrifugal casting temperature on the microstructure and properties of ZTAP/HCCI matrix composites

Author:

Niu Ge,Sui YudongORCID,Zeng Hongbin,He Han,Jiang Yehua,Zhou MojinORCID

Abstract

Abstract In the centrifugal casting process, the casting temperature parameters affected the microstructure characteristics, and the performance of the materials was greatly significant. ZTA (ZrO2 reinforced Al2O3) particles reinforced HCCI (High chromium cast iron) matrix composites with honeycomb structure were obtained by centrifugal casting. With the increased casting temperature (1450 °C, 1500 °C, 1550 °C, and 1600 °C), the austenite equivalent diameter size was 43.5 μm, 34.8 μm, 33.1 μm, 22.3 μm respective in the compound area and 58.3 μm, 63.1 μm, 65.2 μm, 71.5 μm respective in substrate area. The average size of eutectic carbides in the compound area decreased from 5.7 μm to 2.5 μm with the casting temperature increased. Meanwhile, the lattice constants of austenite and carbide increased with the increased temperature. The hardness of the composites increased by 4 ∼ 6HRC with a change in casting temperature. The results of three-body abrasive wear under high-stress static load conditions showed that the wear volume loss of the composites reduced with the temperature increased and the wear resistance was 1.4 times at 1600 °C than that at 1450 °C.

Funder

Training Program of Kunming University of Science and Technology, China

Yunnan Fundamental Research Projects

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3