The electrochemical corrosion performance of aluminum alloys grade 6082-T6 weld repair

Author:

Sareekumtorn Porntep,Chaideesungnoen SasiratORCID,Muangjunburee PrapasORCID,Oo Hein ZawORCID

Abstract

Abstract This research investigated the corrosion behavior of standard current metal inert gas weld repair for 6082-T6 aluminum alloy using ER5356 filler metal. The new and repaired (NW and RW) welds were studied. The welds comprised the weld metal (WM), the heat affected zone (HAZ) (solid solution and softened zones), and the base metal (BM). The study focused on investigating electrochemical corrosion using polarization and electrochemical impedance spectroscopy (EIS) methods in 3.5% NaCl solutions, especially in HAZ, including metallurgical and mechanical examinations. The BM containing an α-Al matrix with Al(Fe,Mn)Si and Mg2Si phases exhibited the maximum hardness (70–104 HV0.1). The WM hardness decreased (67–76 HV0.1) with the α-Al, β-Mg3Al2, and Mg2Si phases. Despite having comparable phases to BM, HAZs showed lower hardness (Solid HAZ: 70–82 HV0.1) due to more intermetallic phases. The RW’s softened HAZ revealed the minimum hardness (52–63 HV0.1) compared to that of the NW (55–70 HV0.1). Besides, the tensile strength of the RW (179.7 MPa) was also lower than that of the NW (174.4 MPa) because of the reheating effect. The electrochemical corrosion results indicated that the BM exhibited the maximum corrosion resistance (the lowest corrosion current density (icorr), the highest corrosion potential (Ecorr), and the charge transfer resistance (Rct)), followed by the HAZ and the WM, respectively. The softened HAZ demonstrated better corrosion resistance than the solid solution HAZ. Conversely, the over-aging effect reduced the softened zone’s pitting corrosion resistance (Ep) compared to the solid solution zone. The RW exhibited inferior corrosion resistance compared to the NW due to increased intermetallic phases, which was consistent with the mechanical results. However, the RW’s softened HAZ corrosion characteristics were inconsistent with its mechanical properties; its hardness and tensile strength were the lowest, but its corrosion resistance was not. Pitting corrosion was observed on the weld surfaces using the SEM.

Funder

National Science, Research, and Innovation Fund (NSRF) and Prince of Songkla University

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3