Abstract
Abstract
In this research work, the development of Al-SiC composite material from rice husk and its parametric assessment is done using a CNC milling machine. They are further surface characterized, and mechanical properties such as BET surface area, SEM-EDX, and XRD, fracture toughness, tensile, and bending strength are studied. The machinability of the components is investigated for selected values of input-output parameters. Three castings, each with different particulate reinforcement combinations, are made with aluminum alloy (6061) using the stir casting method. BET surface area of extracted silica and Al-SiC composite material was found 374 m2 g−1 and 150 m2 g−1, respectively. From results of BET surface area revealed that silica obtained from rice husk is more heterogeneous with a large surface area. A heterogeneous surface with larger pores was found through SEM images. XRD diffraction peaks show changes of amorphous silica into crystallinity in the composite material. The results also indicate that fracture toughness is very good at low temperatures and good machinability on CNC milling machines makes it suitable for aerospace applications.
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献