Impact of ammonia treatment and platinum group or nickel metal decoration on the activated carbon storage of carbon dioxide and methane

Author:

Aboud Mohamed F AlyORCID,ALOthman Zeid AORCID,Bagabas Abdulaziz AORCID

Abstract

Abstract Greenhouse gases, chiefly carbon dioxide (CO2) and methane (CH4), emission is responsible for the global warming and heat waves which strike the world causing floods and droughts everywhere with more CO2 attributions. The adsorption and desorption capacities of CO2 and CH4 at room temperature and up to 5.0 and 100 bar, respectively, were investigated for the untreated and ammonia-treated activated carbons (ACs), metal-anchored (metal: Ru, Rh, Pd, Ir or Ni) samples. We merged ammonia treatment and metal decoration to discover their influences on the CO2 and CH4 storage capability of ACs and the potential use of such modified ACs for capturing greenhouse gases and purifying natural gas from CO2. The CO2 storage capacities ranged between 25.2 and 27.7 wt% at 5.0 bar with complete regeneration upon desorption, while the uptakes for CH4 were in the range of 9.6 − 12.6 wt% at 35 bar with hysteresis behavior of the adsorbed gas. The highest adsorption capacities were achieved for the pristine samples, showing that metal decoration reduced slightly the adsorption. Ammonia-treated samples showed minor enhancing effect on the CH4 adsorption in comparison to the CO2 adsorption. The higher adsorption capacities of CO2 than those of CH4 could be employed for upgrading the natural gas, while the 9.6 wt% (2.2 mmol g−1) CO2 storage capacity would allow for its removal from the flue gases at ambient temperature and pressure. The higher adsorption capacity and preferentiality of CO2 over CH4 could be attributed mainly to its higher quadrupole moment and its higher clustering above the AC surfaces, while a minor effect, if any, would be attributed to the modifications of the ACs, implying that physisorption mechanism acted significantly in the adsorption process in comparison to chemisorption mechanism at the studied conditions.

Funder

National Plan for Science, Technology and Innovation (MAARIFAH), King

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference138 articles.

1. Clock ticking on climate action;Tollefson;Nature,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3