Influence of graphene oxide filler content on the dentin bond integrity, degree of conversion and bond strength of experimental adhesive. A SEM, micro-Raman, FTIR and microtensile study

Author:

Bin-Shuwaish Mohammed S,Maawadh Ahmed M,Al-Hamdan Rana S,Alresayes Saad,Ali Thamer,Almutairi Basil,Vohra FahimORCID,Abduljabbar TariqORCID

Abstract

Abstract The study aimed to evaluate the effect of graphene oxide (GO) nano-filler content in experimental dental adhesive on its degree of conversion (DC), microtensile bond strength (μTBS) and structural reliability, using Fourier transform infrared spectroscopy (FTIR), Micro-Raman spectroscopy and Scanning electron microscopy (SEM). A resin adhesive was fabricated (control adhesive - CA) and fabricated GO nano-particles were added at 0.5% and 2.0% (m/m) to produce adhesives GOA1 and GOA2 respectively. One hundred and two teeth (specimens) were prepared for dentin exposure and conditioned with 36% phosphoric acid. Specimens in each group (n = 34) were treated with formulated adhesives (CA, GOA1 & GOA2) and photo-polymerized for 20 s followed by composite build up. Sixty specimens were used for μTBS testing in the adhesive groups (CA, GOA1 & GOA2), with half exposed to thermocycling (TC) whereas the remaining half (n = 10) stored in distilled water. Seven specimens each were assessed using SEM and Micro-Raman spectroscopy, in each adhesive group (n = 7). DC for the adhesives was assessed using FTIR. The means of μTBS and DC were analyzed using ANOVA and post hoc Tukey multiple comparisons test. GO nano-filler content showed significant influence on the adhesive μTBS in comparison to controls (p < 0.01). Ageing (TC) revealed significant reduction in the μTBS, except in GOA2 specimens, which showed comparable outcomes among TC and non-TC specimens (p > 0.05). DC was significantly higher in control adhesive [46.8 (3.6)%] compared to GOA2 [37.7 (4.2)%] specimens, however DC was comparable among GOA1 [42.3 (2.9)%] and GOA2 [37.7 (4.2)%] specimens (p > 0.05) respectively. GO exhibited interaction within adhesive and tooth dentin comparable to control adhesive. Increasing GO content showed increase in μTBS of adhesive to dentin, but a decrease in degree of conversion. Under ideal conditions, experimental adhesive with 2% GO content showed acceptable bond strength and DC; and should be further assessed under dynamic conditions to recommend clinical use.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3