Surface coatings analysis and their effects on reduction of tribological properties of coated aluminum under motion with ML approach

Author:

Chowdhury Mohammad Asaduzzaman,Hossain NayemORCID,Masum Abdullah Al,Islam Md Sakibul,Shahin Mohammad,Hossain Md Imran,Shuvho Md Bengir Ahmed,Ali Md Ramjan,Ahmed A K M Foysal,Nandee Mr Rajib

Abstract

Abstract The popularity of coated aluminum is gaining significant attention in numerous sectors in the industry due to its specific strength, corrosion resistance, and recyclability. However, because of friction, its lifetime reduces which causes a billion-dollar loss every year to our property. Many types of research are going around the world on how friction and wear loss can be reduced. This research focuses on the tribological study of coated aluminum in different conditions in the experiments, lubricant is used to find its efficiency, and coating materials have also its self-lubricating properties. Both reciprocating motion of pin and simultaneous motion of pin and disc applied. The combined effects of lubrication and motions are correlated with the reduction of tribological properties to a certain extent. The velocity of both pin and disc is also varied. Applied loads are changed in different experiments as well. Roughness analysis has also been done to observe the effect of lubricant, motion, and applied load on the surface of the specimens. SEM, EDX, XRD, and FTIR tests are also performed to check the morphology of the specimens. The experiments show that comparatively less friction and wear are in at lubricated, reciprocating, and less velocity of pin and disc conditions. Less coefficient of friction is observed at higher applied load but less wear is produced at lower applied load. The Machine Learning (ML) approach is used to detect patterns automatically in datasets and create models to predict future data or other outcomes.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3