Investigation and characterization of Copper-Fly ash-Tungsten hybrid composites synthesized through P/M process

Author:

Thanga Kasi Rajan SORCID,Balaji A NORCID,Raghav G RORCID,Nagarajan K J,Vettivel S CORCID

Abstract

Abstract This research paper describes the enhancement of mechanical, wear and corrosion behaviour of the Copper (Cu) matrix composite by reinforcing Fly ash (FA) and Tungsten (W). The main objective of this study was to reduce the weight and cost of the hybrid composites. The weight percentage of low density material (FA) was kept constant at 6% and samples were prepared by the addition of W in weight percentages of 3, 6 and 9 in the Cu matrix. The characterization of the hybrid composites was studied using a Scanning Electron Microscope (SEM) and Energy-dispersive spectroscopy (EDS). The micrographs revealed the uniform distribution of W and FA in the Cu matrix. From the mechanical characterization, it was identified that there is an increase in microhardness and compressive strength with the addition of W particles. It can be understood that the W particles occupy substitutional type reinforcement and FA particles occupy interstitial type reinforcement in the Cu matrix. The Wear behavior and its mechanism were studied using worn surface SEM micrographs. It was observed that the lowest specific wear rate was recorded for the hybrid composition of Cu-6FA-6W. Electrochemical polarization test and Electrochemical Impedance Spectroscopy (EIS) study revealed that Cu-6FA-9W shows higher corrosion resistance in both 1 N HCl (256.593 × 10−4 Ω cm2) and seawater media (219.855 × 10−4 Ω cm2) than pure Cu.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3