Efficient visible-light-driven photocatalytic removal of Acid Blue 92, E. coli, and S. aureus over Ag-AgCl nanoparticles-decorated bismuth sulfide microparticles

Author:

Dawi E AORCID,Padervand M,Bargahi A,Eftekhari-Sis B,Bahrami M K,Abdelkader A

Abstract

Abstract Bismuth sulfide particles were modified with Ag-AgCl nanoparticles to make a visible light active plasmonic photocatalyst. The powder x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive x-ray (EDX), elemental mapping, nitrogen adsorption–desorption isotherms (BET-BJH), photoluminescence (PL), and diffuse reflectance spectroscopy (DRS) techniques were served to analyze the morphological and structural properties. To evaluate the photocatalytic performance, Acid Blue 92 (AB92) azo dye was degraded in the aqueous solution under visible light irradiation. According to the results, 0.025 g of the photocatalyst powder was able to remove more than 98% of AB92 at 15 ppm concentration under neutral acidity, following pseudo first-order kinetics. Superoxide anion radicals (O2 •−) were also recognized as the most key species promoting the photodegradation pathway. Also, the antibacterial activity of the materials was explored against E. coli and S. aureus pathogenic bacteria under irradiation and dark conditions. Using transmission electron microscopy (TEM) images of the treated cells, it was found that the plasmonic photocatalyst damaged the cell wall structure of both gram-positive and negative bacteria within 2 h significantly, which could be attributed to the efficient production of destructive superoxide anion radicals on the surface of Ag-AgCl/Bi2S3 particles under illumination.

Funder

Ajman University

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3