Impact and indenting damage of CVD-produced ZnS and ZnSe ceramics

Author:

Chmel AlexandreORCID,Dunaev Anatolij,Sinani Alfred,Shcherbakov Igor’

Abstract

Abstract Time series of acoustic emission pulses were excited in ductile ZnS and ZnSe ceramics either by a falling weight or by indenting the Vickers pyramid. Energy distributions in emitted acoustical emission pulses were found to be random (Poisson-like) in the events of short (0.3–0.5 ms) impact forcing. In the case of the gradual (∼1 s) indenting, the energy distributions followed a power law typical for the self-similar structures appearing through long-range interactions between nucleating microcracks (scaling). In ductile materials, the rate of straining governs the dislocation motion. Provided enough loading time, such as in indenting experiments, the sliding dislocations form bunches, which serve as weak points for the crack nucleation. Given a tend to self-organizing in the ensemble of dislocations, the energy release in impeded cracking process (i. e. indenting) exhibits statistically ordered behavior.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3