Author:
Xue Cheng,Chen Zhao-Yun,Wu Yu-Chun,Guo Guo-Ping
Abstract
The quantum-classical hybrid algorithm is a promising algorithm with respect to demonstrating the quantum advantage in noisy-intermediate-scale quantum (NISQ) devices. When running such algorithms, effects due to quantum noise are inevitable. In our work, we consider a well-known hybrid algorithm, the quantum approximate optimization algorithm (QAOA). We study the effects on QAOA from typical quantum noise channels, and produce several numerical results. Our research indicates that the output state fidelity, i.e., the cost function obtained from QAOA, decreases exponentially with respect to the number of gates and noise strength. Moreover, we find that when noise is not serious, the optimized parameters will not deviate from their ideal values. Our result provides evidence for the effectiveness of hybrid algorithms running on NISQ devices.
Subject
General Physics and Astronomy
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献