Author:
Yan Xiaolan,Li Pei,Wei Su-Huai,Huang Bing
Abstract
Enhancing the dopability of semiconductors via strain engineering is critical to improving their functionalities, which is, however, largely hindered by the lack of basic rules. In this study, for the first time, we develop a universal theory to understand the total energy changes of point defects (or dopants) with different charge states under strains, which can exhibit either parabolic or superlinear behaviors, determined by the size of defect-induced local volume change (Δ V). In general, Δ V increases (decreases) when an electron is added (removed) to (from) the defect site. Consequently, in terms of this universal theory, three basic rules can be obtained to further understand or predict the diverse strain-dependent doping behaviors, i.e., defect formation energies, charge-state transition levels, and Fermi pinning levels, in semiconductors. These three basic rules could be generally applied to improve the doping performance or overcome the doping bottlenecks in various semiconductors.
Subject
General Physics and Astronomy
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献