Author:
Liu Chang,Song Xianqi,Li Quan,Ma Yanming,Chen Changfeng
Abstract
Semiconductivity and superconductivity are remarkable quantum phenomena that have immense impact on science and technology, and materials that can be tuned, usually by pressure or doping, to host both types of quantum states are of great fundamental and practical significance. Here we show by first-principles calculations a distinct route for tuning semiconductors into superconductors by diverse large-range elastic shear strains, as demonstrated in exemplary cases of silicon and silicon carbide. Analysis of strain driven evolution of bonding structure, electronic states, lattice vibration, and electron-phonon coupling unveils robust pervading deformation induced mechanisms auspicious for modulating semiconducting and superconducting states under versatile material conditions. This finding opens vast untapped structural configurations for rational exploration of tunable emergence and transition of these intricate quantum phenomena in a broad range of materials.
Subject
General Physics and Astronomy
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献