Author:
Zhou Weiqing,Yuan Shengjun
Abstract
We develop a self-consistent first-principle method based on the density functional theory. Physical quantities such as the density of states, Fermi energy and electron density are obtained using a time-dependent random state method without diagonalization. The numerical error for calculating either global or local variables always scales as
1
/
S
N
e
, where N
e is the number of electrons and S is the number of random states, leading to a sublinear computational cost with the system size. In the limit of large systems, one random state could be enough to achieve reasonable accuracy. The accuracy and scaling properties of using the method are derived analytically and verified numerically in different condensed matter systems. Our time-dependent random state approach provides a powerful strategy for large-scale density functional calculations.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献