Anomalous Second Magnetization Peak in 12442-Type RbCa2Fe4As4F2 Superconductors

Author:

Yi Xiaolei,Xing Xiangzhuo,Meng Yan,Zhou Nan,Wang Chunlei,Sun Yue,Shi Zhixiang

Abstract

The second magnetization peak (SMP) appears in most superconductors and is crucial for the understanding of vortex physics as well as the application. Although it is well known that the SMP is related to the type and quantity of disorder/defects, the mechanism has not been universally understood. We selected three stoichiometric superconducting RbCa2Fe4As4F2 single crystals with identical superconducting critical temperature T c ∼ 31 K and similar self-field critical current density J c, but with different amounts of disorder/defects, to study the SMP effect. It is found that only the sample S2 with moderate disorder/defects shows significant SMP effect. The evolution of the normalized pinning force density f p demonstrates that the dominant pinning mechanism changes from the weak pinning at low temperatures to strong pinning at high temperatures. The microstructure study for sample S2 reveals some expanded Ca2F2 layers and dislocation defects in RbFe2As2 layers. The normalized magnetic relaxation results indicate that the SMP is strongly associated with the elastic to plastic (E-P) vortex transition. As temperature increases, the SMP gradually evolves into a step-like shape and then becomes a sharp peak near the irreversibility field similar to what is usually observed in low-temperature superconductors. Our findings connect the low field SMP of high-temperature superconductors and the high field peak of low-temperature superconductors, revealing the possible universal origin related to the E-P phase transition.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3