Modulation of Steady-State Heat Transport in a Dissipative Multi-Mode Qubit-Photon System

Author:

Chen Ze-Huan,Wang Fei-Yu,Chen Hua,Lu Jin-Cheng,Wang Chen

Abstract

Quantum heat transport is considered as an indispensable branch of quantum thermodynamics to potentially improve performance of thermodynamic devices. We theoretically propose a dissipative qubit-photon system composed of multiple coupled resonators interacting with a single two-level qubit, to explore the steady-state heat transport by tuning both the inter-resonator photon hopping and the qubit-photon coupling. Specifically in the three-mode case, the dramatic enhancement and suppression of the heat current into the central resonator can be modulated by the corresponding frequency, compared to the currents into two edge resonators. Moreover, fruitful cycle current components are unraveled at weak qubit-photon coupling, which are crucial to exhibit the nonmonotonic feature with increase of the reservoir temperature bias. In the one-dimensional case under the mean-field framework, the influence of the photon hopping on heat transport is analyzed. The steady-state heat current is comparatively enhanced to the single-mode limit at weak qubit-photon coupling, stemming from the nonvanishing mean-field photon excitation parameter and the additional cycle current component. We hope these obtained results may have possible applications in quantum thermodynamic manipulation and energy harvesting.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3