Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series

Author:

Zhang Jia-Chen,Ren Wei-Kai,Jin Ning-De

Abstract

Information entropy, as a quantitative measure of complexity in nonlinear systems, has been widely researched in a variety of contexts. With the development of a nonlinear dynamic, the entropy is faced with severe challenges in dealing with those signals exhibiting extreme volatility. In order to address this problem of weighted permutation entropy, which may result in the inaccurate estimation of extreme volatility, we propose a rescaled range permutation entropy, which selects the ratio of range and standard deviation as the weight of different fragments in the time series, thereby effectively extracting the maximum volatility. By analyzing typical nonlinear systems, we investigate the sensitivities of four methods in chaotic time series where extreme volatility occurs. Compared with sample entropy, fuzzy entropy, and weighted permutation entropy, this rescaled range permutation entropy leads to a significant discernibility, which provides a new method for distinguishing the complexity of nonlinear systems with extreme volatility.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3